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Theoretical analysis of a method for transmitting a complex image field through a single multimode optical fiber is
presented. Using a known reference image, we show that it would be possible to evaluate the instantaneous modal
dispersion of the fiber and use the knowledge of accumulated modal phases to recover the object field. For mea-
suring the complex object and reference fields emanating from the fiber, we propose using a simple arrangement of
two cameras for recording the intensity and Fourier images, followed by a modified Gerchberg–Saxton algorithm
for full complex field reconstruction. While some experimental challenges could still be expected in any future
implementation of this approach, we believe it would eventually allow the first image transmission through a long,
multimode optical fiber. © 2012 Optical Society of America

OCIS codes: 100.3020, 100.5070, 110.2350, 260.2030.

1. INTRODUCTION
Transmitting an image through a single optical fiber is an im-
portant challenge in various fields that call for efficient visual
data transfer across long distances, through narrow passages,
or from hard-to-reach areas. While current fiber optic technol-
ogy offers excellent light transmission at a wide range of wa-
velengths, phase distortions during light propagation prevent
a single, large-core fiber from preserving image details. Cur-
rently, practical methods for image transfer by fiber optics
were developed primarily for clinical diagnosis applications,
including bundles comprising thousands of fibers, distal me-
chanical scanning of the light emanating from a single fiber
[1,2], or spectral encoding techniques [3–5]. All these technol-
ogies, however, require sophisticated probe design and costly
manufacturing procedures (i.e., fiber bundle assembly, scan-
ning mechanism alignment, miniature optics fabrication, etc.).

The biggest obstacle for successful transmission of an im-
age through a large-core multimode fiber is its modal disper-
sion; it has been shown that image scrambling occurs over
very short distances even in ideal straight fibers [6]. One
approach for overcoming the modal phase problem is by em-
ploying phase conjugation techniques between two succes-
sive transmissions through the same fiber [7] or through
two identical fibers [8,9]. While this approach is capable of
transmitting relatively high-quality images in real time, it
would be unsuitable for applications that require image trans-
mission from one end of the fiber to another due to the diffi-
culty to manufacture and position two long, identical (and
motionless) fibers. A method for transmitting an image from
one end of a fiber to another has been proposed and theore-
tically studied [10] using interference between an image and
reference fields on a nonlinear photorefractive crystal, poten-
tially enabling real-time compensation of modal dispersion
using phase conjugation through four-wave mixing. Recently,
image transmission through a standard multimode stationary
fiber was demonstrated [11,12] by utilizing digital holography

techniques and a calibration procedure that establishes the
transformation matrix between orthogonal modes.

In this paper, we propose and theoretically analyze a tech-
nique for transmitting an image between two opposite ends of
a single multimode optical fiber that does not require phase
conjugation or the use of any nonlinear optical processes.
Our approach is based on the transmission of a reference im-
age in addition to the object image, which would serve for
computing the instantaneous modal dispersion and applying
the results for recovering the unknown, scrambled image. Be-
cause the two (image and reference) fields could be trans-
mitted and captured almost simultaneously, this technique
could allow image transfer across long fibers with little sen-
sitivity to fiber motion. Moreover, the use of straightforward
linear detection methods, which do not require the use of non-
linear crystals, would potentially allow the transmission of
weak fields, minimizing undesired nonlinear effects within
the fiber and allowing the use of simple light sources and
detectors.

2. MATHEMATICAL MODEL
Our approach for image transmission through a single optical
fiber is schematically illustrated in Fig. 1(a) and outlined in a
flow chart in Fig. 1(b). First, a reference field (Eref;in) is
coupled into the multimode fiber; its complex output emanat-
ing from the other end of the fiber, denoted by Eref;out, is mea-
sured; and the accumulated relative phase Δϕ of the different
propagation modes is calculated. Next, the object field, de-
noted by Ein, is coupled into the fiber and its complex output
field Eout is measured. Assuming that fiber parameters re-
mained constant between the transmissions of the object
and reference fields, the calculated set of accumulated modal
phases is now used for numerically compensating for the
modal phases of the output object field, thus recovering the
original input field Ein.
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Our mathematical model assumes an ideal, weakly guiding
step-index fiber having core and cladding refractive indices
nc and ncl, respectively, which satisfy the inequality
�n2

c − n2
cl�∕2n2

c ≪ 1. The propagation of an electromagnetic
field in such optical fiber could be conveniently simulated
using the linearly polarized (LP) modes [13]—a set of ortho-
gonal eigenmodes of the fiber that spans all propagating fields.
Using cylindrical coordinates with the z axis parallel to the
main fiber axis, the electric field of each LP mode polarized
in the x axis is described by its azimuthal (l) and radial (m)
mode numbers according to
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where Elm
0 is a normalization constant, Jl is the Bessel func-

tion of the first kind of order l, Kl is the modified Bessel func-
tion of the second kind of order l, rc denotes the fiber core
radius, ulm and wlm are the normalized transverse phase
and attenuation constants, respectively, and the propagation
constant βlm of each mode is given by
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lm
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s
; (2)

where k0 � 2π∕λ and λ denotes the optical wavelength. In
addition to these modes, each mode with l ≠ 0 has also a
twin mode with an orthogonal helical polarity, mathematically
expressed by replacing the cosine in Eq. (1) with a sine
term. For the full representation of the optical field one
needs also to consider the orthogonal polarization modes
Elm
y �r; θ; z�; we will be omitting these modes from our simula-

tions for brevity, that is, Elm � Elm
x , and we will discuss

the effect of polarization diversity in the discussion sec-
tion below.

In order to simulate image coupling into a multimode fiber,
we assume that the object is imaged onto the face of the fiber
using an ideal optical relay system that demagnifies the object
image and adjusts its spatial extent to the dimensions of the
fiber core [Fig. 2(a)]. After the optical relay system, the object
field could be expressed as a superposition of the LP modes
according to

Ein �
X
l;m

almin E
lm; (3)

where the summation is over all possible real (Elm � �Elm��)
propagation modes, and almin denotes the complex amplitude

Fig. 1. (a) Schematic of the method for transmitting an image
through a single optical fiber. (b) Flow chart outlining the various
steps for computing the accumulated modal phases and recovering
the object image.

Fig. 2. (a) Input field coupling into a multimode fiber. (b) The resulting images expressed as superposition of LP modes of different core
diameters (2rc).
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coefficient of each mode lm, calculated using the overlap
integral

almin �
Z
s
EinElmds; (4)

where s denotes the fiber cross-section area. Spanning the
space of all possible propagation fields in a fiber, the total
number of propagation modes Nm would determine the over-
all fidelity of the transmitted image: high-order modes contain
high spatial frequencies and therefore allow the transmission
of fine details in an image. The effect of the number of modes
on image quality is evident by plotting the coupled field inten-
sity jEinj2 of the image termed “Cameraman” into 50, 100, 150,
and 200 μm diameter fibers, supporting up to 152, 598, 1343,
and 2381 LPmodes, respectively [Fig. 2(b)]. Refractive indices
of the core and the clad were assumed to be 1.4570 and 1.4537,
respectively, and the wavelength was 632.8 nm. For quantify-
ing the improvement in image quality, the point-spread func-
tion (PSF) was calculated by simulating the coupling of a
point image into the fiber. The total number of resolvable
points Np was then evaluated by dividing the total fiber cross
section by the effective area of a hexagon whose apothem a
equals half the width at e−1 of the maximum of the PSF:

Np ≅
π

8
���
3

p �2rc�2
a2

: (5)

The number of resolvable points Np (blue circles) and the
number of propagation modes Nm (red squares) are plotted in
Fig. 3 for different core diameters between 10 and 200 μm,
showing nearly identical dependence on the normalized fre-
quency parameter V of the fiber. The well-known approxima-
tion for the number of modes in a large-core fiber Nm � V2∕4
(single polarization) is plotted by a dashed curve for
reference.

After coupling into the fiber, field propagation could be si-
mulated by multiplying the complex amplitude of each mode
almin by a complex coefficient blm, which indicates its attenua-
tion (jblmj ≤ 1) and phase change (Δϕlm � anglefblmg) during

propagation. In many cases where fiber length is of the
order of several meters, energy losses could be neglected;
each mode maintains its power (jblmj � 1) but accumulates
a different phase owing to its propagation constant βlm:
Δϕlm � −βlmz0, where z0 denotes the total fiber length. Here,
we also assume that the optical fiber is uniform along its main
(z) axis and neglect strong fiber bends, essentially assuming
no energy coupling between different modes. This assump-
tion, of course, is clearly an idealization that would need to
be validated experimentally in a future work. Under these as-
sumptions, the field emerging from the fiber output is given by

Eout �
X
l;m

almin b
lm�z0�Elm �

X
l;m

almin e
iΔϕlm�z0�Elm; (6)

and ideally could be calculated using the known input field
and the modes’ propagation constants. The propagation of
the input field generated from coupling the cameraman image
(Fig. 4, top panel) through a 150 μm diameter fiber
(V � 72.985) was simulated using Eq. (6) for different fiber
lengths (Fig. 4, lower panels). Although the total image bright-
ness was preserved during propagation, the accumulated
phase differences between the various modes caused rapid
image degradation [6]; after only 2 mm (Fig. 4, bottom right
panel), details in the original input image were completely
lost. Despite the rapid drop in image detail, the input object
field could, in principle, be calculated (assuming an ideal,
motionless fiber) from the output field Eout in a straight-
forward manner by first calculating its complex amplitude
coefficients almout using

almout �
Z
s
EoutElmds; (7)

and then backpropagating the different modes by assigning an
opposite set of modal phases −Δϕlm � −�−βlmz0� to obtain the
input object field:

Fig. 3. (Color online) Number of resolvable points (blue circles) and
number of propagation modes (red squares) as a function of the fiber’s
core diameter and normalized frequency parameter. Dashed curve:
Nm � V2∕4 (see text).

Fig. 4. Image propagation in 150 μm core diameter fiber
(V � 72.985).
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Ein �
X
l;m

almoute
−iΔϕiElm: (8)

In reality, however, fiber imperfections even within the de-
sign tolerances, such as various defects, fiber bends, and local
strains, would significantly affect the rate at which the phase
of each mode is accumulated. Moreover, variations of fiber
parameters caused, for example, by fiber motion, vibrations,
and temperature changes would often prevent practical mea-
surement or characterization of the phase accumulation. To
account for such effects, we will be assuming that the accu-
mulated modal phases cannot be calculated analytically and
therefore must be considered completely random for any
practical purpose, even after propagation through a few cen-
timeters of a multimode fiber. Moreover, the random modal
phases could not be assumed to remain constant over time
and would be extremely sensitive to temporal fiber variations.
Any measurement of the modal phases would thus needs to be
sufficiently fast to avoid detail washout, and the time gaps be-
tween successive measurements need to be short compared
to the characteristic time scales of the modal dispersion
changes.

3. REFERENCE IMAGE TRANSMISSION
In order to allow the calculation of the accumulated phase for
each mode Δϕlm at high signal-to-noise ratios, a reference
field containing all LP modes with uniformly distributed am-
plitudes needs to be generated and transmitted through the
fiber. An example for such a reference field (almin;ref � 1) is
shown in Fig. 5(a), comprising two linear features extending
from the core center to its circumference. The corresponding
coefficients of the LP modes comprising this field are plotted
in Fig. 5(b) using two-dimensional gray-scale representations
of the amplitudes jalmin;ref j and phases angle�almin;ref� of each
mode. The horizontal and vertical axes in Fig. 5(b) represent
different values of l and m, respectively. Values on the right-
(left-) hand side of l � 0 correspond to the coefficients that
include the cosine (sine) modes. After coupling the reference
image into the fiber, each mode then propagates and emerges
from the fiber output, accumulating a total phaseΔϕlm

ref , which
could be calculated from the measured output coefficients
[Eq. (7)] and from the known input coefficients [Fig. 5(b)]
according to

Δϕlm
ref � angle�almref;out� − angle�almref;in�; (9)

where

almref;out �
Z
s
Eref;outElmds; (10)

almref;in �
Z
s
Eref;inElmds � 1: (11)

Assuming a linear optical system, the accumulated phases
Δϕlm

ref would depend only on the fiber properties and not on
the field itself. Therefore, if fiber parameters are unchanged
between the transmissions of the reference and object fields,
we could assume that

Δϕlm � Δϕlm
ref ; (12)

that is, similar phases for all the modes comprising the object
and the (known) reference fields. After calculating the refer-
ence phases, these phases can now be used for recovering the
object field even for fibers much longer than the characteristic
length at which modal dispersion dominates. OnceΔϕlm

ref (and
therefore Δϕlm) is known for each mode, the transmitted
object field could be calculated using Eq. (8).

4. MEASURING OUTPUT FIELDS
Unfortunately, conventional CCD and complementary metal–
oxide–semiconductor (CMOS) cameras can only capture op-
tical intensity and thus cannot directly measure complex
fields; phase information of a field is often computed based
on a number of intensity images. Various methods for recover-
ing complex fields exist in the scientific literature, including
the use of the Shack–Hartmann wavefront sensor [14], as
well as newer methods for phase reconstruction using self-
referencing [15], multiple-beam interferometry [16], and
parallel-planes imaging [17], all of which could be utilized
for measuring the complex output fields Eref;out and Eout ema-
nating from the fiber. Our approach for measuring the output
fields relies on capturing the intensities of the output field Iout
and of its Fourier transform ~Iout [Fig. 6(a)], followed by the

Fig. 5. Input reference field for calculating modal phase. (a) Intensity image. (b) Amplitudes (top) and phases (bottom) of the modes comprising
the reference field.
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recovery of the phases using a modified Gerchberg–Saxton
[18] algorithm [Fig. 6(b)]. The proposed technique attempts
to avoid the use of sophisticated optical components and
could potentially allow high-resolution measurements with

a large dynamic range. Briefly, the Gerchberg–Saxton algo-
rithm includes [Fig. 6(b)] iterative transformations between
the object domain and its Fourier domain while forcing the
measured amplitude constraints in both domains. We have
found that without any modification, the Gerchberg–Saxton
algorithm had a relatively low success rate of less than 75%
for different simulated object fields due to occasional conver-
gence to local minima.

In order to improve the success rate of the algorithm,
we have added an error monitor at the Fourier domain [see
Fig. 6(b)], which served to reduce convergence into local
minima. After each iteration j, the error εj was calculated
using

εj � 1
S

Z
S
jjFFTfEjgj2 − ~Ioutj2ds; (13)

where Ej denotes the calculated field at iteration j and FFT
denotes fast Fourier transform. Convergence of the algorithm
was detected by comparing the error changes between suc-
cessive iterations to a user-predefined threshold value. Error
changes smaller than this value had initiated the addition of a
random phase to each pixel in the image at gradually decreas-
ing magnitudes. Assuming ideal conditions (no noise, accu-
rate imaging), the addition of the error monitor has
improved the success rate of the algorithm from approxi-
mately 75% to nearly 100%.

5. SIMULATION RESULTS
In order to test our approach for transmitting an image
through a multimode fiber, a reference field [Fig. 7(a), see also

Fig. 6. (Color online) Extracting the complex output fields from two
intensity images. (a) The output field is split into two imaging chan-
nels; one captures an intensity image, the other captures a Fourier
image. (b) The captured images serve as the inputs to a modified
Gerchberg–Saxton algorithm with a small-error monitor. FFT, fast
Fourier transform; IFFT, inverse fast Fourier transform. ∠: angle.

Fig. 7. (Color online) Reference field transmission, acquisition, and calculation of the complex mode coefficients. (a) Reference field intensity at
the fiber input. (b) Intensity image recorded by the imaging camera. (c) Intensity image recorded by the Fourier camera (logarithmic scale). (d) Left:
error parameter during algorithm convergence. Middle: resulting intensity (top) and phase (bottom) of the output field calculated by the
Gerchberg–Saxton algorithm. Right: amplitudes (top) and phases (bottom) of the lm mode coefficients comprising the calculated output field.
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Fig. 5] was expressed as a superposition of the LP modes
[Eq. (3)] of a 150 μm diameter fiber core (V � 72.985). The
reference field propagation across the entire (arbitrary)
length of the fiber was simulated by assigning a random phase
to each propagation mode. The measurement of the reference
field emerging from the fiber output was simulated by comput-
ing the field intensity [Iout, Fig. 7(b)] and the intensity of its
two-dimensional Fourier transform [~Iout, Fig. 7(c)]. Using
these two inputs, our modified Gerchberg–Saxton algorithm
was applied to calculate the complex output field using
2500 iterations [Fig. 7(d), left panel], and the resulting output
reference field [Fig. 7(d), middle panels] was then expressed
as a superposition of the fiber’s LP mode coefficients
[Fig. 7(d), right panels]. Note the abrupt error rises during
algorithm progression indicative of the addition of the random
phases when error changes below the threshold value were
detected. The resulting output field was obtained after
approximately 15 s using MATLAB software, with 128 × 128
pixel images and full pixel depth (64 bit). The output field
from the Gerchberg–Saxton algorithm showed close similarity
to the actual simulated field both in amplitude [Fig. 7(b)] and
phase (data not shown), verifying a successful convergence to
a global minimum.

Next, after transmission of the reference image and the cal-
culation of the accumulated modal phases [Fig. 7(d), bottom

right panel], we have simulated the transmission of the cam-
eraman image [Fig. 2(a)] by assigning to its LP mode coeffi-
cients [Fig. 8(a)] the same random set of phases that was
used to simulate the reference field propagation [Eq. (12)].
The output image [Fig. 8(b)] and its Fourier transform image
[Fig. 8(c)] were then used by the modified Gerchberg–Saxton
algorithm to compute the complex output field [Fig. 8(d)].
Finally, by expressing the output field in terms of its propaga-
tion modes using Eq. (7) and by subtracting the accumulated
modal phases computed from the reference field, the input
field of the cameraman was recovered [Fig. 8(e)], showing
good resemblance to the input image with similar complex
mode coefficients [Fig. 8(a)].

The presented method could recover not only the intensity
of an input field but also its phases. It would thus be possible
to transmit and recover full complex fields or phase-only
images of transparent objects such as cells and biological tis-
sue. To simulate the transmission of a phase image, we have
numerically generated a phase field of a single cell [Fig. 9(a)]
and simulated its transmission through a 150 μm diameter
fiber (V � 72.985) by assigning random modal phases to
its modal coefficients. The output intensity [Fig. 9(b)] and
Fourier [Fig. 9(c)] images were then used for calculating
the output complex field, while the accumulated modal
phases were calculated from reference image transmission

Fig. 8. Simulating image transmission and recovery. (a) Input image and its comprising mode coefficients. (b) Output image recorded by the
imaging camera. (c) Output image recorded by the Fourier camera (logarithmic scale). (d) Intensity (top) and phase (bottom) of the output complex
field calculated by the Gerchberg–Saxton algorithm. (e) Intensity and the mode coefficients of the recovered image, showing good correlation with
the input image (a).
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(Fig. 5), which were subsequently used to recover the original
phase image of the cell [Fig. 9(d)].

6. SENSITIVITY TO NOISE
In any practical implementation of the proposed method, real-
world limitations in measuring the output field would deterio-
rate the quality of the recovered image. We have found that
recovery of the input image was feasible only when using
at least 10 bit digitization for the acquired frames, while
8 bit data sampling showed significant reduction in the suc-
cess rate of image recovery (data not shown). In order to

study the sensitivity of the method to different levels of
SNR, random Gaussian noise was numerically added to the
simulated camera captures of the transmitted reference and
object fields. The recovered images of an input (intensity-
only) image of a single cell (Fig. 10, top left panel) are shown
for different simulated SNR values (Fig. 10, top panels); data
acquisitions with SNRs below 13 dB had resulted in significant
reduction of image quality and, occasionally, inability of the
algorithm to converge into solutions that resembled the true
input fields. Similar results were obtained for the transmission
of phase-only image of a single cell (Fig. 10, bottom panels);

Fig. 9. Phase-only image transmission and recovery. (a) Object phase image (top) and its corresponding mode coefficients (bottom).
(b) Intensity output image recorded by the imaging camera. (c) Intensity output image recorded by the Fourier camera (logarithmic scale).
(d) Recovered phase image (left) and the corresponding mode coefficients (right) of the input field, showing good correlation with the input
image (a).

Fig. 10. Simulated transmission of input amplitude-only (top) and phase-only (bottom) fields through a 150 μm core diameter optical fiber
(V � 72.985) for different SNR levels.
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SNRs below 13 dB resulted in limited or no ability to calculate
the input field.

7. DISCUSSION
So far, direct image transmission from one end to another of a
long multimode fiber has not been demonstrated experimen-
tally. The reason for this difficulty is well known to be the
modal dispersion in weakly guiding fibers, which deteriorates
the image even after a few millimeters of propagation. In the-
ory, characterizing the modal dispersion of a given fiber could
be used for numerically compensating for it; however, long
optical fibers are highly sensitive structures and often tend
to vary their optical properties even under the slightest exter-
nal influence. While this property is ideal for sensing the
environment [19], it makes image transmission extremely
difficult because the fiber’s transfer function needs to be
constantly monitored.

Our method for overcoming the modal dispersion problem
involves the transmission of a reference field in close time
proximity to the object image, calculating the fiber’s instanta-
neous modal dispersion, and using the data to calculate the
input field. A key challenge in this approach would be the gen-
eration and transmission of the reference image: it needs to
include at least a portion of all possible propagation modes
in order to measure their modal phases and, at the same time,
needs to be simple enough to generate experimentally in a re-
peatable manner. Unfortunately, a single point source, which
could be relatively simple to produce, cannot excite all the LP
modes. The reference image in this work (Fig. 5) includes all
the propagation modes with uniform amplitudes and phases
and could still be easily produced in an actual experiment.

Another key aspect for successful image transmission
would be the measurement of the output object and reference
fields. Our choice to use the simplest possible optical setup for
capturing intensity images and to recover the phases using
iterative algorithms would be relatively straightforward to im-
plement in the laboratory. Moreover, the large dynamic range
and low noise of current CCD and CMOS cameras would po-
tentially allow capturing the transmitted fields with the high
accuracy level required for calculating their phases. The total
computation time of our modified Gerchberg–Saxton algo-
rithm was only a few seconds and could be further shortened
using a dedicated computation system that would permit high-
er imaging rates.

The number of resolvable points potentially offered by a
single multimode fiber would be comparable to the number
of fibers (pixels) in a fiber bundle of comparable diameter,
albeit using much simpler, longer, and less expensive imaging
probes. Obviously, larger-diameter fibers would allow higher-
resolution images to be transmitted, at the expense, however,
of more sophisticated computation algorithms and longer
processing times. Unlike fiber-bundle technology, the single-
multimode-fiber approach could also be used to transmit
phase images (Fig. 9), which could be useful for imaging bio-
logical specimens or for the transmission of three-dimensional
complex fields. Color imaging would also be possible with this
technique, for example by using three narrowband channels in
the blue, green, and red wavelengths.

Compared to the previously published method for image
transmission through a multimode fiber [11,12], which uses
a spatial light modulator for calculating the fiber’s transfer

matrix and transmitting an image comprised of a large number
of modes, our approach requires only a single reference field
for calibration and could thus be utilized in applications where
fast, real-time estimation of the fibers’ transfer function is
needed, for example in applications that involve occasional
fiber motion or operate under varying environmental condi-
tions. In addition, our reference field could, in principle, be
generated using a simple amplitude mask and would not
necessitate expensive electro-optical components at the
transmitting end.

Finally, realizing the proposed technique in the laboratory
would face several challenges related mainly to the various
simplifying assumptions made during this work. Perhaps
the most critical challenge would be associated with the cross
talk between the propagation modes; in a preliminary experi-
ment for testing the feasibility of this technique we have
observed occasional energy coupling between modes and
between different polarizations, which we relate primarily
to nonuniformities along the optical fiber. Another difficulty
that would need to be addressed is the short time required
between the transmissions of the reference and object images;
long fibers exposed to motion, strain, or temperature varia-
tions would exhibit fast variations in modal dispersion, requir-
ing shorter time periods between field transmissions. It is
worth noting, however, that full modal phase computation
and input field recovery does not necessarily depend on these
time periods; the two fields could be transmitted almost in-
stantaneously using a fast mechanical, electrical, or optical
switching, while field computation could be performed at a
later time. Still, dedicated computing hardware with a fast
processor should be required for any real-time imaging
applications.

In conclusion, a novel method for transmitting an image
field through a single multimode fiber is theoretically pre-
sented and discussed. The method is based on the transmis-
sion of a reference field in addition to the image field, which is
used for calculating the instantaneous modal dispersion and
for recovering the complex input field. Using a relatively
simple optical setup, which does not rely on nonlinear optics,
fast-moving parts, or interferometry, we expect this method to
allow image transmission at high resolutions across long, sin-
gle optical fibers. Such technology may find important appli-
cations in telecommunication, remote sensing, and minimally
invasive biomedical imaging.
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